Structural Properties of the Wyner–Ziv Rate Distortion Function: Applications for Multivariate Gaussian Sources

Author:

Gkagkos Michail1ORCID,Charalambous Charalambos D.2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Texas A & M University, College Station, TX 77843, USA

2. Department of Electrical and Computer Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus

Abstract

The main focus of this paper is the derivation of the structural properties of the test channels of Wyner’s operational information rate distortion function (RDF), R¯(ΔX), for arbitrary abstract sources and, subsequently, the derivation of additional properties for a tuple of multivariate correlated, jointly independent, and identically distributed Gaussian random variables, {Xt,Yt}t=1∞, Xt:Ω→Rnx, Yt:Ω→Rny, with average mean-square error at the decoder and the side information, {Yt}t=1∞, available only at the decoder. For the tuple of multivariate correlated Gaussian sources, we construct optimal test channel realizations which achieve the informational RDF, R¯(ΔX)=▵infM(ΔX)I(X;Z|Y), where M(ΔX) is the set of auxiliary RVs Z such that PZ|X,Y=PZ|X, X^=f(Y,Z), and E{||X−X^||2}≤ΔX. We show the following fundamental structural properties: (1) Optimal test channel realizations that achieve the RDF and satisfy conditional independence, PX|X^,Y,Z=PX|X^,Y=PX|X^,EX|X^,Y,Z=EX|X^=X^. (2) Similarly, for the conditional RDF, RX|Y(ΔX), when the side information is available to both the encoder and the decoder, we show the equality R¯(ΔX)=RX|Y(ΔX). (3) We derive the water-filling solution for RX|Y(ΔX).

Funder

European Regional Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3