On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions

Author:

Shadimetov Kholmat,Hayotov AbdulloORCID,Abdikayimov Botir

Abstract

The present work is devoted to the construction of optimal quadrature formulas for the approximate calculation of the integrals ∫02πeiωxφ(x)dx in the Sobolev space H˜2m. Here, H˜2m is the Hilbert space of periodic and complex-valued functions whose m-th generalized derivatives are square-integrable. Here, firstly, in order to obtain an upper bound for the error of the quadrature formula, the norm of the error functional is calculated. For this, the extremal function of the considered quadrature formula is used. By minimizing the norm of the error functional with respect to the coefficients, an optimal quadrature formula is then obtained. Using the explicit form of the optimal coefficients, the norm of the error functional of the optimal quadrature formula is calculated. The convergence of the constructed optimal quadrature formula is investigated, and it is shown that the rate of convergence of the optimal quadrature formula is O(hm) for |ω|<N and O(|ω|−m) for |ω|≥N. Finally, we present numerical results of comparison for absolute errors of the optimal quadrature formula with the exp(iωx) weight in the case m=2 and the Midpoint formula. There, one can see the advantage of the optimal quadrature formulas.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference18 articles.

1. III.—On a Quadrature Formula for Trigonometric Integrals

2. An optimal formula for computation of linear functionals;Babuška;APL Mater. (Ger.),1965

3. Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space L 2 ( m ) ( 0 , 1 ) $L_{2}^{(m)}(0,1)$

4. Optimal quadrature formulas for numerical evaluation of Fourier coefficients in W2(m,m−1);Boltaev;J. Appl. Anal. Comput.,2017

5. A Modification of Filon's Method of Numerical Integration

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3