Sensitivity of Acute Myelocytic Leukemia Cells to the Dienone Compound VLX1570 Is Associated with Inhibition of the Ubiquitin-Proteasome System

Author:

Selvaraju Karthik,Lotfi KouroshORCID,Gubat JohannesORCID,Miquel Maria,Nilsson Amanda,Hill Julia,Jensen Lasse D.ORCID,Linder StigORCID,D’Arcy PádraigORCID

Abstract

Dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been widely reported to show tumor cell selectivity. These compounds target the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. The induction of oxidative stress, depletion of glutathione, and induction of high-molecular-weight (HMW) complexes have also been reported. We here examined the response of acute myeloid leukemia (AML) cells to the dienone compound VLX1570. AML cells have relatively high protein turnover rates and have also been reported to be sensitive to depletion of reduced glutathione. We found AML cells of diverse cytogenetic backgrounds to be sensitive to VLX1570, with drug exposure resulting in an accumulation of ubiquitin complexes, induction of ER stress, and the loss of cell viability in a dose-dependent manner. Caspase activation was observed but was not required for the loss of cell viability. Glutathione depletion was also observed but did not correlate to VLX1570 sensitivity. Formation of HMW complexes occurred at higher concentrations of VLX1570 than those required for the loss of cell viability and was not enhanced by glutathione depletion. To study the effect of VLX1570 we developed a zebrafish PDX model of AML and confirmed antigrowth activity in vivo. Our results show that VLX1570 induces UPS inhibition in AML cells and encourage further work in developing compounds useful for cancer therapeutics.

Funder

Cancerfonden

Vetenskapsrådet

Radiumhemmets Forskningsfonder

Mary Béves Stiftelse för Barncancerforskning

Knut och Alice Wallenbergs Stiftelse

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3