Derivation and Verification of Gaussian Terrain Wake Model Based on Wind Field Experiment

Author:

Liu Wei,Zhu Xiaoxun,Wang Kaike,Gao Xiaoxia,Zhang Shaohai,Dong Lijiang,Shi Zeqi,Lu Hongkun,Zhou Jie

Abstract

Aiming at the problem where the current engineering wake model does not describe the wind speed distribution of the wake in the complex terrain wind farm completely, based on the three-dimensional full wake model (3DJGF wake model), this paper proposed a wake model that can predict the three-dimensional wind speed distribution of the entire wake region in the complex wind farm, taking into account the Coanda effect, wind shear effect, and wake subsidence under the Gaussian terrain. Two types of Doppler lidar were used to conduct wind field experiments, and the inflow wind profile and three-dimensional expansion of the wake downstream of the wind turbine on the Gaussian terrain were measured. The experimental results showed that the wake centerline and terrain curve showed similar variation characteristics, and the near wake profile was similar to a super-Gaussian shape (asymmetric super-Gaussian shape) under low-wind-speed conditions, while the near wake profile presented a bimodal shape (asymmetric bimodal shape) under high-wind-speed conditions. The predicted profiles of the Gaussian terrain wake model were compared with the experimental data and the three typical wake models. The comparison results showed that the newly proposed Gaussian terrain wake model fit well with the experimental data in both near wake and far wake regions, and it had better performance in predicting the wake speed of the Gaussian terrain wind farm than the other three wake models. It can effectively predict the three-dimensional velocity distribution in the whole wake region of complex terrain.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Research Institute for Sustainable Urban Development

state Grid Xinjiang Company Limited Electric Power Research Institute science and technology project of the development of customized wind power prediction system under terrain wake coupling

Research project of state perception and fault diagnosis technology for multi field coupling vibration of hydropower units

Post-graduate’s Innovation Fund Project of Hebei Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3