Modeling Study on Melt Flow, Heat Transfer, and Inclusion Motion in the Funnel-shaped Molds for Two Thin-Slab Casters

Author:

Xu Lin,Pei Qun-Wu,Han Ze-Feng,Yang ShuoORCID,Wang Jian-Yu,Yao Yan-TaoORCID

Abstract

For the purpose of studying compact strip production (CSP) funnel-shaped mold and flexible thin-slab rolling (FTSR) funnel-shaped mold, a three-dimensional (3D) multi-field coupling mathematical model was established to describe the electromagnetic braking (EMBr) continuous casting process. To investigate the metallurgical effect of EMBr in the CSP and FTSR funnel-shaped thin-slab molds, a Reynolds-averaged Navier–Stokes (RANS) turbulence model, together with an enthalpy–porosity approach, was established to numerically simulate the effect of ruler EMBr on the behaviors of melt flow, heat transfer, solidification, and inclusion movement in high-speed casting. The simulation results indicate that the application of ruler EMBr in the CSP and FTSR molds shows great potential to improve the surface temperature of molten steel and reduce the penetration depth of downward backflow. This contributes to the melting of the slag rim near the meniscus region and facilitates the floating removal of the inclusions in the molten pool. In addition, in comparison with the case of no EMBr, the parametric study shows that the braking effect of ruler EMBr with an electromagnetic parameter of 0.5 T can enhance the upward backflow in the two high-speed thin-slab molds. The enhanced upward backflow can successfully entrain the inclusions to the top of the mold and improve the activity of surface fluctuations to avoid the formation of the slag rim. For instance, for the ruler EMBr applied to the FTSR mold, the maximum amplitude of surface fluctuation and the floatation removal quantity of inclusions with a diameter of 100 μm are increased by 4.6 percent and 51 percent, respectively.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Liaoning Province

the Scientific Research Project of Liaoning Provincial Department of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3