Temperature-Related N2O Emission and Emission Potential of Freshwater Sediment

Author:

Li Shuai,Yue Ang,Moore Selina SterupORCID,Ye Fei,Wu Jiapeng,Hong YiguoORCID,Wang Yu

Abstract

Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas. Among natural sources, freshwater ecosystems are significant contributors to N2O. Although temperature is a key factor determining the N2O emissions, the respective effects of temperature on emitted and dissolved N2O in the water column of freshwater ecosystems remain unclear. In this study, 48 h incubation experiments were performed at three different temperatures; 15 °C, 25 °C, and 35 °C. For each sample, N2O emission, dissolved N2O in the overlying water and denitrification rates were measured, and N2O-related functional genes were quantified at regular intervals. The highest N2O emission was observed at an incubation of 35 °C, which was 1.5 to 2.1 factors higher than samples incubated at 25 °C and 15 °C. However, the highest level of dissolved N2O and estimated exchange flux of N2O were both observed at 25 °C and were both approximately 2 factors higher than those at 35 °C and 15 °C. The denitrification rates increased significantly during the incubation period, and samples at 25 °C and 35 °C exhibited much greater rates than those at 15 °C, which is in agreement with the N2O emission of the three incubation temperatures. The NO3− decreased in relation to the increase of N2O emissions, which confirms the dominant role of denitrification in N2O generation. Indeed, the nirK type denitrifier, which constitutes part of the denitrification process, dominated the nirS type involved in N2O generation, and the nosZ II type N2O reducer was more abundant than the nosZ I type. The results of the current study indicate that higher temperatures (35 °C) result in higher N2O emissions, but incubation at moderate temperatures (25 °C) causes higher levels of dissolved N2O, which represent a potential source of N2O emissions from freshwater ecosystems.

Funder

National Natural Science Foundation of China

Funding by Science and Technology Projects in Guangzhou

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3