Deep Learning Based Target Tracking Algorithm Model for Athlete Training Trajectory

Author:

Wang Yue

Abstract

The main function of the athlete tracking system is to collect the real-time competition data of the athletes. Deep learning is a research hotspot in the field of image and video. With the rapid development of science and technology, it has not only made a breakthrough in theory, but also achieved excellent results in practical application. SiamRPN (Siamese Region Proposal Network) is a single target tracking network model based on deep learning, which has high accuracy and fast operation speed. However, in long-term tracking, if the target is completely obscured and out of the sight of SiamRPN, the tracking of the network will be invalid. Considering the difficulty of long-term tracking, the algorithm is improved and tested by introducing channel attention mechanism and local global search strategy into SiamRPN. Experimental results show that this algorithm has higher accuracy and prediction average overlap rate than the original SiamRPN algorithm when performing tracking tasks on long-term tracking sequences. At the same time, the improved algorithm can still achieve good results in the case of target disappearance and other challenging factors. This study provides an important reference for the coaches of deep learning to realize long-term tracking of athletes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3