Optimization of Demand-Response-Based Intelligent Home Energy Management System with Binary Backtracking Search Algorithm

Author:

Latif Suhaib N. Abdul,Shi JinjingORCID,Salman Hasnain Ali,Tang Yongze

Abstract

In many nations, limited power from providers and an increase in demand for electricity have created new opportunities that can be used by home energy management systems (HEMSs) systems to enforce proper use of energy. This paper presents a virtual intelligent home with demand response (DR) model home appliances that have an inverter air conditioner, water pump, washing machine, and inverter refrigerator. A binary backtracking search algorithm (BBSA) is proposed to introduce the optimal schedule controller. With the proposed BBSA schedule controller, the highest energy consumption during DR can be reduced by 33.84% during the weekends and by 30.4% daily during the weekdays. The results indicate the effectiveness of the proposed HEMS. Additionally, the model can control the appliances and maintain total residential energy consumption below the defined demand limit.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Electric Vehicle Solar PV Case Studies Based Demand Response Modernization;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

2. A Multi-Objective Improved Cockroach Swarm Algorithm Approach for Apartment Energy Management Systems;Information;2023-09-25

3. Review on optimization techniques and role of Artificial Intelligence in home energy management systems;Engineering Applications of Artificial Intelligence;2023-03

4. Data consumption-based home energy management for residential platform;3RD INTERNATIONAL CONFERENCE ON SMART CITIES AND SUSTAINABLE PLANNING;2023

5. Research on Intelligent Teaching Organization Management System Based on Matrix Algorithm;2022 2nd International Conference on Networking, Communications and Information Technology (NetCIT);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3