Abstract
Simultaneous Equations Models (SEM) is a statistical technique widely used in economic science to model the simultaneity relationship between variables. In the past years, this technique has also been used in other fields such as psychology or medicine. Thus, the development of new estimating methods is an important line of research. In fact, if we want to apply the SEM to medical problems with the main goal being to obtain the best approximation between the parameters of model and their estimations. This paper shows a computational study between different methods for estimating simultaneous equations models as well as a new method which allows the estimation of those parameters based on the optimization of the Bayesian Method of Moments and minimizing the Akaike Information Criteria. In addition, an entropy measure has been calculated as a parameter criteria to compare the estimation methods studied. The comparison between those methods is performed through an experimental study using randomly generated models. The experimental study compares the estimations obtained by the different methods as well as the efficiency when comparing solutions by Akaike Information Criteria and Entropy Measure. The study shows that the proposed estimation method offered better approximations and the entropy measured results more efficiently than the rest.
Funder
Ministerio de Economía y Competitividad
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献