Abstract
Kinetic models of aggregation and dissolution of clusters in disordered heterogeneous materials based on subdiffusive equations containing fractional derivatives are studied. Using the generalized fractional Fick law and fractional Fokker–Planck equation for impurity diffusion with localization, we consider modifications of the classical models of Ham, Aaron–Kotler, and Lifshitz–Slezov for nucleation and decomposition of solid solutions. The asymptotic time dependencies of supersaturation degree, average cluster size, and other characteristics at the stages of subdiffusion-limited nucleation and coalescence are calculated and analyzed.
Funder
Russian Foundation for Basic Research
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献