Abstract
For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference18 articles.
1. Graph Theory with Applications;Bondy,1976
2. A partition calculus in set theory
3. Ramsey Theory;Graham,1990
4. On Partition Theorems for Finite Graphs. Infinite and Finite Sets;Erdös;Colloq. Math. Soc. János Bolyai N.-Holl. Amsterdam.,1975
5. Ramsey Graph Theory;Parsons,1978
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multicolor bipartite Ramsey numbers for paths, cycles, and stripes;Computational and Applied Mathematics;2022-12-30
2. Some results on the multipartite Ramsey numbers m(C3,C,n1K2,n2K2,…,nK2);Heliyon;2022-11
3. On size multipartite Ramsey numbers of large paths versus wheel on five vertices;Discrete Mathematics, Algorithms and Applications;2022-07-18
4. The size multipartite Ramsey numbers mj(C3,C3,nK2,mK2);Discrete Mathematics, Algorithms and Applications;2022-05-13
5. A Proof of a Conjecture on Bipartite Ramsey Numbers B(2,2,3);Mathematics;2022-02-23