Abstract
The current article presents the design, implementation, validation, and use of a Computer-Aided Control System Design (CACSD) toolbox for nonlinear and hybrid system uncertainty modeling, simulation, and control using μ synthesis. Remarkable features include generalization of classical system interconnection operations to nonlinear and hybrid systems, automatic computation of equilibrium points for nonlinear systems, and optimization of least conservative uncertainty bounds, with direct applicability for μ synthesis. A unified approach is presented for the step-down (buck), step-up (boost), and single-ended primary-inductor (SEPIC) converters to showcase the use and flexibility of the toolbox. Robust controllers were computed by minimization of the H∞ norm of the augmented performance systems, encompassing a wide range of uncertainty types, and have been designed using the well-known mixed-sensitivity closed loop shaping μ synthesis method.
Funder
European Social Fund; Entrepreneurial competences and excellence research in doctoral and postdoctoral programs – ANTREDOC
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献