A Metamorphic Testing Approach for Assessing Question Answering Systems

Author:

Tu Kaiyi,Jiang Mingyue,Ding Zuohua

Abstract

Question Answering (QA) enables the machine to understand and answer questions posed in natural language, which has emerged as a powerful tool in various domains. However, QA is a challenging task and there is an increasing concern about its quality. In this paper, we propose to apply the technique of metamorphic testing (MT) to evaluate QA systems from the users’ perspectives, in order to help the users to better understand the capabilities of these systems and then to select appropriate QA systems for their specific needs. Two typical categories of QA systems, namely, the textual QA (TQA) and visual QA (VQA), are studied, and a total number of 17 metamorphic relations (MRs) are identified for them. These MRs respectively focus on some characteristics of different aspects of QA. We further apply MT to four QA systems (including two APIs from the AllenNLP platform, one API from the Transformers platform, and one API from CloudCV) by using all of the MRs. Our experimental results demonstrate the capabilities of the four subject QA systems from various aspects, revealing their strengths and weaknesses. These results further suggest that MT can be an effective method for assessing QA systems.

Funder

National Nature Science Foundation of China, Zhejiang ProvincialNatural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metamorphic Testing for the Deepfake Detection Model;2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C);2023-10-22

2. Metamorphic Testing of Relation Extraction Models;Algorithms;2023-02-10

3. MetaFL: Metamorphic fault localisation using weakly supervised deep learning;IET Software;2023-02

4. Evaluation of Chinese Natural Language Processing System Based on Metamorphic Testing;Mathematics;2022-04-12

5. Metamorphic testing of named entity recognition systems: A case study;IET Software;2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3