Eco-Friendly Production of Polyvinyl Alcohol/Carboxymethyl Cellulose Wound Healing Dressing Containing Sericin

Author:

Mariello Massimo12ORCID,Binetti Enrico13ORCID,Todaro Maria Teresa14ORCID,Qualtieri Antonio1ORCID,Brunetti Virgilio1,Siciliano Pietro3ORCID,De Vittorio Massimo12ORCID,Blasi Laura13

Affiliation:

1. Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy

2. Dipartimento Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy

3. Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy

4. Institute of Nanotechnology NANOTEC-CNR, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy

Abstract

Wound dressing production represents an important segment in the biomedical healthcare field, but finding a simple and eco-friendly method that combines a natural compound and a biocompatible dressing production for biomedical application is still a challenge. Therefore, the aim of this study is to develop wound healing dressings that are environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. Hydrogel wound healing dressings were prepared from polyvinyl alcohol/carboxymethyl cellulose and sericin using the freeze–thawing method as a crosslinking method. The morphological characterization was carried out by scanning electron microscopy (SEM), whereas the mechanical analysis was carried out by dynamic mechanical analysis (DMA) to test the tensile strength and compression properties. Then, the healing property of the wound dressing material was tested by in vitro and ex vivo tests. The results show a three-dimensional microporous structure with no cytotoxicity, excellent stretchability with compressive properties similar to those of human skin, and excellent healing properties. The proposed hydrogel dressing was tested in vitro with HaCaT keratinocytes and ex vivo with epidermal tissues, demonstrating an effective advantage on wound healing acceleration. Accordingly, this study was successful in developing wound healing dressings using natural agents and a simple and green crosslinking method.

Funder

Progetto regionale Lab on a Swab

Italian Ministry of Research

“Fit4MedRob- Fit for Medical Robotics” Grant

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3