A Novel Fracturing Fluid Based on Functionally Modified Nano-Silica-Enhanced Hydroxypropyl Guar Gel

Author:

Huang Feifei1ORCID,Bai Yun2,Gu Xiaoyu3,Kang Shaofei1,Yang Yandong1,Wang Kai2

Affiliation:

1. School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, China

3. School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

Considering the damage caused by conventional fracturing fluid in low-permeability reservoirs, a novel fracturing fluid (FNG) combining hydroxypropyl guar (HPG) and functionally modified nano-silica (FMNS) was prepared. The properties of heat/shear resistance, rheological property, proppant transportation, and formation damage were evaluated with systematic experiments. The results showed that the viscosities of FNG before and after the heat/resistance were 1323 mPa·s and 463 mPa·s, respectively, while that of conventional HPG gel was 350 mPa·s. FNG is a pseudoplastic strong gel with a yield stress of 12.9 Pa, a flow behavior index of 0.54, an elastic modulus of 16.2 Pa, and a viscous modulus of 6.2 Pa. As the proportions of proppant mass in further sections transported with FNG were higher than those transported with HPG gel, FNG could transport the proppant better than HPG gel at high temperatures. Because of the amphiphilic characteristics of FMNS, the surface/interface properties were improved by the FNG filtrate, resulting in a lower oil permeability loss rate of 10 percentage points in the matrix than with the filtrated HPG gel. Due to the considerable residual gel in broken HPG gel, the retained conductivity damaged with broken FNG was 9.5 percentage points higher than that damaged with broken HPG gel. FNG shows good potential for reducing formation damage during fracturing in low-permeability reservoirs in China.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

Natural Science Special Project of Shaanxi Provincial Education Department of China

Science and Technology Plan Project in Yan’an of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3