The Use of Coherence Functions of Acoustic Emission Signals as a Method for Diagnosing Wind Turbine Blades

Author:

Bejger Artur1ORCID,Drzewieniecki Jan Bohdan1ORCID,Bartoszko Przemysław1,Frank Ewelina2

Affiliation:

1. Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland

2. Windhunter Academy, Windhunter Group, 75-221 Koszalin, Poland

Abstract

Acoustic emission (AE) is one of the methods of non-destructive evaluation (NDE), and functions by means of detecting elastic waves caused by dynamic movements in AE sources, such as cracking in various material structures. In the case of offshore wind turbines, the most vulnerable components are their blades. Therefore, the authors proposed a method using AE to diagnose wind turbine blades. In the identification of their condition during monitoring, it was noted that the changes characterising blade damage involve non-linear phenomena; hence, wave phenomena do not occur in the principal components of the amplitudes or their harmonics. When the authors used the inverse transformation in the signal analysis process, which essentially leads to finding a signal measure, it allowed them to distinguish the wave spectrum of an undamaged system from one in which the material structure of the blade was damaged. The characteristic frequencies of individual phenomena interacting with the blade of a working turbine provide the basis for the introduction of filters (or narrowband sensors) that will increase the quality of the diagnosis itself. Considering the above, the use of the coherence function was proposed as an important measure of a diagnostic signal, reflecting a given condition of the blade.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3