Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems

Author:

Prozuments Aleksejs1ORCID,Zemitis Jurgis1ORCID,Bulanovs Aleksejs1

Affiliation:

1. Department of Heat Engineering and Technology, Faculty of Civil Engineering, Riga Technical University, LV-1048 Riga, Latvia

Abstract

As building energy consumption gains ever-increasing attention worldwide, the focus on addressing it through the examination and optimization of efficient heat recovery solutions continues to intensify. With well-insulated and airtight buildings, the proportion of heating needs attributed to ventilation is growing, leading to the widespread integration and optimization of heat recovery solutions in mechanical ventilation systems. Heat recovery in ventilation is a highly efficient strategy for reducing heat losses and conserving energy. This study involves the investigation of a ventilation unit installed in an apartment situated in Riga, Latvia, as a practical examination of heat recovery system efficiency within the Latvian climate conditions, representing a cold climate region. The objective of this study was to examine the heat recovery efficiency of the ventilation system in the Latvian climate with variable outdoor and exhaust air parameters, given that the dry heat recovery efficiency is different from the actual heat recovery efficiency. The ventilation unit was equipped with a plate heat exchanger at an airflow rate of 105 m3/h. To evaluate heat recovery efficiency, extensive measurements of air temperature and relative humidity were conducted. The collected data was analyzed, employing statistical regression analysis to ensure measurement reliability and assess correlations. The findings indicated a strong correlation between variables such as heat content, moisture content, and sensible air parameters. It was observed that the actual heat recovery efficiency was 6% higher than the calculated dry efficiency, emphasizing the importance of considering real-world conditions in heat recovery assessments. Additionally, regression analysis demonstrated a positive linear correlation with a coefficient of 0.77, highlighting the dependency between actual measurements and the theoretical model. These quantitative outcomes provide essential insights for optimizing heat recovery systems and enhancing energy-efficient ventilation practices, especially in cold climate environments. Moreover, this study highlights the strong correlation between variables such as heat content, moisture content, and sensible air parameters. Findings offer essential insights for optimizing heat recovery systems and enhancing energy-efficient ventilation practices, especially in cold climate environments.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3