European Green Deal: An Experimental Study of the Biomass Filtration Combustion in a Downdraft Gasifier

Author:

Golub Gennadii1,Tsyvenkova Nataliya1,Kukharets Savelii2ORCID,Holubenko Anna3,Omarov Ivan4,Klymenko Oleksandra5,Mudryk Krzysztof5ORCID,Hutsol Taras67ORCID

Affiliation:

1. Department of Tractors, Automobiles and Bioenergy Resources, National University of Life and Environmental Sciences of Ukraine, Heroev Oborony Str. 15B, 03-040 Kyiv, Ukraine

2. Department of Mechanical, Energy and Biotechnology Engineering, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, Akademija, LT-53362 Kaunas, Lithuania

3. Department of Electrification, Automation of Production and Engineering Ecology, Polissia National University, Stary blvd. 7, 10-008 Zhytomyr, Ukraine

4. Department of Renewable Organic Energy Resources, Institute of Renewable Energy of the National Academy of Sciences of Ukraine, Hnata Hotkevicha Str. 20-a, 02-094 Kyiv, Ukraine

5. Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland

6. Department of Mechanics and Agroecosystems Engineering, Polissia National University, 10-008 Zhytomyr, Ukraine

7. Department of Machine Use in Agriculture, Dmytro Motornyi Tavria State Agrotechnological University, Zhukovskyi Str. 66, 69-002 Zaporizhzhia, Ukraine

Abstract

This study presents the experimental results obtained from hybrid filtration combustion using biomass pellets. The experiments were carried out using a porous media gasifier filled with pellets and inert material. The gasifying agent used was an air–steam mixture, with 40% being steam. The dependence of the temperature in the gasifier’s reaction zone from the volume percentage of inert porous material in the gasifier, the specific heat capacity of this material, as well as the air–steam blowing rate, was investigated. The multifactor experiment method was used. A maximum temperature of 1245 °C was achieved using 28 vol% of porous material with a heat capacity of 1000 J/(kg·°C) and at a blowing rate of 42 m3/h. The maximum hydrogen content in the syngas was 28 vol%. This was achieved at an air–steam blowing rate of 42 m3/h and 40 vol% porous material, with a heat capacity of 1000 J/(kg·°C). The calorific value of the syngas was 12.6 MJ/m3. The highest CO content in the gas was 28 vol% and was obtained at 20 vol% porous material with a heat capacity of 1000 J/(kg·°C) and a blowing rate of 42 m3/h. The obtained information is applicable in the design, management, and control of gas production by way of a hybrid filtration combustion process in a downdraft gasifier.

Funder

Ministry of Education of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3