Affiliation:
1. Sinopec Research Institute of Petroleum Processing, Beijing 100083, China
2. College of Automotive Engineering, Jilin University, Changchun 130022, China
Abstract
In the modern industrial field, there is a strong emphasis on energy-saving and emission reduction. Increasing the amount of ethanol in ethanol–gasoline blends has the potential to replace fossil fuel gasoline more effectively, improving energy efficiency and lowering emissions. The interaction between liquid fuel film generation on the piston crown and spray impingement in the combustion chamber in the setting of GDI engines has a substantial impact on particle emissions and engine combustion. In this study, 92# gasoline and ethanol by volume are combined to create the ethanol–gasoline blend E40. The spray characteristics and film properties of both gasoline and the intermediate proportion ethanol–gasoline blend E40 were researched utilizing a constant volume combustion platform and the schlieren method and refractive index matching (RIM) approach. The results show that, for 0.1–25 operating conditions, gasoline consistently displays greater macroscopic spray characteristic parameters than E40. This shows that gasoline fuel spray evaporation is superior to E40. Similar results are seen in the analysis of wall-attached fuel films, where the volume and thickness of the gasoline film are less than those of the E40 film under the given operating conditions. In contrast, E40 consistently exhibits stronger macroscopic spray characteristic values than gasoline under the 0.1–150 and 0.4–150 operating conditions, along with lower film thickness and volume. As a result, under these two operating conditions, E40 fuel performs better during spray evaporation.
Funder
National Energy R&D Center of Petroleum Refining Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction