Experimental Study on Macroscopic Spray and Fuel Film Characteristics of E40 in a Constant Volume Chamber

Author:

Tian Huayu1,Wang Jun1,Zhang Ran1,Zhang Yulin2,Su Yan2,Yu Hao2,Shen Bo2

Affiliation:

1. Sinopec Research Institute of Petroleum Processing, Beijing 100083, China

2. College of Automotive Engineering, Jilin University, Changchun 130022, China

Abstract

In the modern industrial field, there is a strong emphasis on energy-saving and emission reduction. Increasing the amount of ethanol in ethanol–gasoline blends has the potential to replace fossil fuel gasoline more effectively, improving energy efficiency and lowering emissions. The interaction between liquid fuel film generation on the piston crown and spray impingement in the combustion chamber in the setting of GDI engines has a substantial impact on particle emissions and engine combustion. In this study, 92# gasoline and ethanol by volume are combined to create the ethanol–gasoline blend E40. The spray characteristics and film properties of both gasoline and the intermediate proportion ethanol–gasoline blend E40 were researched utilizing a constant volume combustion platform and the schlieren method and refractive index matching (RIM) approach. The results show that, for 0.1–25 operating conditions, gasoline consistently displays greater macroscopic spray characteristic parameters than E40. This shows that gasoline fuel spray evaporation is superior to E40. Similar results are seen in the analysis of wall-attached fuel films, where the volume and thickness of the gasoline film are less than those of the E40 film under the given operating conditions. In contrast, E40 consistently exhibits stronger macroscopic spray characteristic values than gasoline under the 0.1–150 and 0.4–150 operating conditions, along with lower film thickness and volume. As a result, under these two operating conditions, E40 fuel performs better during spray evaporation.

Funder

National Energy R&D Center of Petroleum Refining Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3