Comparative Analysis of Primers Used for 16S rRNA Gene Sequencing in Oral Microbiome Studies

Author:

Na Hee Sam123,Song Yuri12,Yu Yeuni45,Chung Jin123ORCID

Affiliation:

1. Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea

2. Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea

3. Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea

4. Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Republic of Korea

5. Department of Biomedical Informatics, School of Medicine, Pusan National University, Busan 46241, Republic of Korea

Abstract

Recent advances in genomic technologies have enabled more in-depth study of the oral microbiome. In this study, we compared the amplicons generated by primers targeting different sites of the 16S rRNA gene found in the Human Oral Microbiome Database (HOMD). Six sets of primer targeting V1–V2, V1–V3, V3–V4, V4–V5, V5–V7 and V6–V8 regions of 16S rRNA were tested via in silico simulation. Primers targeting the V1–V2, V3–V4, and V4–V5 regions generated more than 90% of the original input sequences. Primers targeting the V1–V2 and V1–V3 regions exhibited a low number of mismatches and unclassified sequences at the taxonomic level, but there were notable discrepancies at the species level. Phylogenetic tree comparisons showed primers targeting the V1–V2 and V3–V4 regions showed performances similar to primers targeting the whole 16s RNA region in terms of separating total oral microbiomes and periodontopathogens. In an analysis of clinical oral samples, V1–V2 primers showed superior performance for identifying more taxa and had better resolution sensitivity for Streptococcus than V3–V4 primers. In conclusion, primers targeting the V1–V2 region of 16S rRNA showed the best performance for oral microbiome studies. In addition, the study demonstrates the need for careful PCR primer selections.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3