Abstract
Porous materials fixed on and downstream the cylinder can reach a much better effect in suppressing wall pressure fluctuations. In the present paper, numerical comparative studies have been conducted to investigate passive control of flow past a cylinder surface, in which three schemes with different porous treatments are applied to compare their pros and cons. The results show all of the three schemes of porous materials increase the time-averaged flow drag and reduce fluctuations of lift and drag forces. It can be concluded the velocity gradient reduction inside the boundary layer and the vortex shedding delay through porous coating, as well as reverse transition from turbulent vortex shedding into laminar through porous treatment downstream the cylinder, are main flow control mechanisms of porous materials. These mechanisms all reduce fluctuations of lift and drag fluctuations, but have a distinct effect on the features of wake evolution, such as the wake width and length as well as the fluctuating components of the flow velocity. In addition, the wake evolution is highly affected by the location of porous materials.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献