Impact of Hybrid Ventilation Strategies in Energy Savings of Buildings: In Regard to Mixed-Humid Climate Regions

Author:

Park Kyung-Yong,Woo Deok-Oh,Leigh Seung-Bok,Junghans Lars

Abstract

It has been identified that improving building energy efficiency is an effective method to reduce greenhouse gas (GHG) emissions. Although standards have been established to satisfy a building’s minimum energy demand while ensuring the comfort of its residents, they are difficult to implement in mixed-humid regions. This study proposes a hybrid ventilation strategy that can comprehensively reduce cooling, heating, and ventilation energy in mixed-humid climate regions to significantly decrease the primary energy demand and reduce the impact of buildings on the environment. This study evaluated the changes in energy saving potential and thermal comfort according to the extension of the natural ventilation period and passive strategies, such as decentralized ventilation. Changes in indoor air temperature, operative temperature, and PMV for each strategy were analyzed. As a result, extending the natural ventilation and the decentralized ventilation strategies can save 32% and 34% of the building’s energy, respectively. Considering that electricity is the main energy source for cooling in Korea, the extension of the natural ventilation period was judged to be the best approach from the perspective of primary energy demand. The results can be used to predict changes in building energy demand and thermal comfort and select an appropriate ventilation strategy based on occupant information obtained using Internet of Things.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future

2. Directive 2002/91/EC of the European Parliament and the Council, 16th December 2002, Concerning the Energy Efficiency of the Buildings https://hoxe.vigo.org/pdf/valedorcidadan/AO_7ENG.pdf

3. Thermal comfort and energy performance: Sensitivity analysis to apply the Passive House concept to the Portuguese climate

4. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept

5. Passive House Requirements, Passivhaus Institut (PHI), (Retrieved 11 December 2017) https://passiv.de/en/02_informations/02_passive-house-requirements/02_passive-house-requirements.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3