Cardoon Hydrolysate Detoxification by Activated Carbon or Membranes System for Bioethanol Production

Author:

Tavares Ana P. M.ORCID,Gonçalves Matthew J. A.,Brás TeresaORCID,Pesce Gaetano R.ORCID,Xavier Ana M. R. B.ORCID,Fernandes Maria C.ORCID

Abstract

Advanced biofuels incorporation into the transportation sector, particularly cellulosic bioethanol, is crucial for attaining carbon neutrality by 2050, contributing to climate changes mitigation and wastes minimization. The world needs biofuel to be commercially available to tackle the socioeconomic challenges coming from the continued use of fossil fuels. Cynara cardunculus (cardoon) is a cheap lignocellulosic raw biomass that easily grows in Mediterraneous soils and is a potential renewable resource for a biorefinery. This work aimed to study the bioethanol production from cardoon hemicellulosic hydrolysates, which originated from dilute sulfuric acid hydrolysis pretreatment. A detoxification step to remove released microbial fermentative inhibitors was evaluated by using both activated carbon adsorption and a nanofiltration membrane system. The Scheffersomyces stipitis CBS5773 yeast and the modified Escherichia coli MS04 fermentation performances at different experimental conditions were compared. The promising results with E. coli, using detoxified cardoon by membrane nanofiltration, led to a bioethanol volumetric productivity of 0.30 g·L−1·h−1, with a conversion efficiency of 94.5%. Regarding the S. stipitis, in similar fermentation conditions, volumetric productivity of 0.091 g·L−1·h−1 with a conversion efficiency of 64.9% was obtained. Concluding, the production of bioethanol through detoxification of hemicellulosic cardoon hydrolysate presents a suitable alternative for the production of second-generation bioethanol, especially using the modified E. coli.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3