Abstract
We implemented the semantically open conceptual framework ‘Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism’ (MuSIASEM) to deal with nexus challenges in agricultural production systems in transboundary river basins, using the Iranian Aras River Basin as a case study. The performance of the agricultural sector was characterized for relevant typologies of crop production using metabolic profiles, i.e., inputs and outputs per ton of crop produced, per hectare of land use, and per hour of labor. This analysis was contextualized across hierarchical levels of analysis, including the agronomic context at the regional level (rainfed versus irrigated cultivation), the socio-economic and political context at the national level (food sovereignty; urbanization), and the hydro-ecological context of the larger transboundary river basin (water constraints, GHG emissions). We found that the simultaneous use of two different interrelated logics of aggregation—the productivity of land and labor (relevant for the agronomic and socio-economic dimension) and the density of flows under different land uses (relevant for the hydrological and ecological dimension)—allowed for the identification of trade-offs in policy deliberations. In the case of Iran, it showed that striving for strategic autonomy will exacerbate the current water crisis; with the current cropping patterns, agronomic improvements will not suffice to avert a water crisis. It was concluded that the proposed approach fills an important gap in nexus research, but to effectively guide nexus governance in the region, a co-production of the analysis with social actors as well as more complete data sets at the river basin level would be essential.
Funder
Spanish Ministry of Science and Innovation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献