Study on Mechanical Properties of Permeable Polymer Treated Loess

Author:

Zhao Weifan,Guo Chengchao,Wang ChaojieORCID,Wang Yuke,Wang Lina

Abstract

The reinforcement and durability of loess are of great importance for road performance. In this study, a self-designed grouting system and newly permeable polymers were adopted to investigate the mechanical properties and durability of solidified loess (SL), considering different dry densities and water contents. The unconfined compression test and piezocone penetration (CPTU) test were used to examine the mechanical properties. The mechanism of the loess solidified by permeable polymer was analyzed from the micro-level by SEM, MIP, and XRD tests. The test results show that the effect of polymer grouting is obvious, the unconfined compressive strength (UCS) of the SL after grouting is as high as 3.05–5.42 MPa; it is 11.83–20.99 times that of unsolidified loess (UL). The UCS of the SL after grouting is inversely proportional to the dry densities and water contents. After 56 days of immersion, the SL still shows a high compressive strength. The additional erosion of the SL was not caused by the salt solution; the durability is significantly better than that of cement mixing soil. The sensitivity of various factors on the UCS of the SL are service environment > water content > dry density. The SEM tests clearly show that the gel formed by the reaction of the polymer with water on the surface of soil particles makes the bond of soil particles tighter. It can be observed from the MIP test that the cumulative mercury of SL was 0.115 mL/g, which was 33.72% of UL (0.341 mL/g), and the cumulative mercury of SL after immersion in water and salt solutions was 0.183 mL/g and 0.175 mL/g, which was 53.7% and 51.3% of UL (0.341 mL/g), respectively. The XRD results show that there are no other new mineral components produced after grouting and the spacing between crystalline planes decreases, which proves that permeable polymer grouting makes the soil denser and does not erode the soil particles.

Funder

Henan major science and technology projects

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3