Experiments and Modeling of Machined Spring Rotary Actuators with Shape Memory Alloys

Author:

Chen Tiegang,Zhang Yuhang,Qiu Shengbin,Jiang Jun,Zhang Qiang,Zhang Xiaoyong

Abstract

This paper presents a novel rotary actuator using an NiTi shape memory alloy machined spring (SMAMS). An analytical model is put forward to describe the relationship between the twist angle and temperature of SMAMSs under different applied torques. Following that, a numerical model is developed to analyze the stress distributions and twist angle-torque responses of the SMAMS, tube, and spring of the circular cross-section. Thus, the advantages of the SMAMS over the other two rotary actuators are obtained. Moreover, experiments with SMAMSs are conducted to validate these models and study their mechanical responses. Results show that the SMAMS can be designed to have a larger twist angle than the cylindrical-type rotary actuators and to bear a larger torque than the wire-based-type rotary actuators, provided that the inner and outer diameter remains unchanged. Specifically, the maximum actuating twist angle of SMAMSs reaches 278.5°, and their maximum actuating torque is 0.312 N·m. The maximum two-way twist angle of SMAMSs reaches 171° at the pre-applied torque of 0.12 N·m. Moreover, the geometry is found to have a significant influence on the actuating capacity of SMAMSs. When the moments of inertia of SMAMS are 0.82 and 4.69, the corresponding torsion angles are 185.3° and 29.8°, respectively. In general, the SMAMSs with a larger moment of inertia can withstand a larger load. This work fills the gap between wire-based-type rotary actuators and cylindrical-type rotary actuators and is expected to expand the use for SMAs in the rotary actuator.

Funder

National Natural Science Foundation of China

Beijing NOVA program

Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Motors for Makers: A Guide to Steppers, Servos, and Other Electrical Machines;Scarpino,2015

2. A review of shape memory alloy research, applications and opportunities

3. Machined helical springs from NiTiHf shape memory alloy

4. TiNi-Based Bi-Metallic Shape-Memory Alloy by Laser-Directed Energy Deposition

5. A Review on Machining Aspects of Shape Memory Alloys;Vora,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3