A High-Performance Magnetic Shield with MnZn Ferrite and Mu-Metal Film Combination for Atomic Sensors

Author:

Fang Xiujie,Ma Danyue,Sun Bowen,Xu Xueping,Quan Wei,Xiao Zhisong,Zhai Yueyang

Abstract

This study proposes a high-performance magnetic shielding structure composed of MnZn ferrite and mu-metal film. The use of the mu-metal film with a high magnetic permeability restrains the decrease in the magnetic shielding coefficient caused by the magnetic leakage between the gap of magnetic annuli. The 0.1–0.5 mm thickness of mu-metal film prevents the increase of magnetic noise of composite structure. The finite element simulation results show that the magnetic shielding coefficient and magnetic noise are almost unchanged with the increase in the gap width. Compared with conventional ferrite magnetic shields with multiple annuli structures under the gap width of 0.5 mm, the radial shielding coefficient increases by 13.2%, and the magnetic noise decreases by 21%. The axial shielding coefficient increases by 22.3 times. Experiments verify the simulation results of the shielding coefficient of the combined magnetic shield. The shielding coefficient of the combined magnetic shield is 16.5%. It is 91.3% higher than the conventional ferrite magnetic shield. The main difference is observed between the actual and simulated relative permeability of mu-metal films. The combined magnetic shielding proposed in this study is of great significance to further promote the performance of atomic sensors sensitive to magnetic field.

Funder

China Postdoctoral Science Foundation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3