Study on the Grooved Morphology of CMC-SiCf/SiC by Dual-Beam Coupling Nanosecond Laser

Author:

Chen Tao,Chen Xiaoxiao,Zhang Xuanhua,Zhang Huihui,Zhang Wenwu,Liu Ganhua

Abstract

Due to the excellent properties of high hardness, oxidation resistance, and high-temperature resistance, silicon carbide fiber reinforced silicon carbide ceramic matrix composite (CMC-SiCf/SiC) is a typical difficult-to-process material. In this paper, according to the relationship between the spatial posture of dual beams and the direction of the machining path, two kinds of scanning methods were set up. The CMC-SiCf/SiC grooving experiments were carried out along different feeding directions (transverse scanning and longitudinal scanning) by using a novel dual-beam coupling nanosecond laser, and the characteristics of grooving morphology were observed by Laser Confocal Microscope, Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometer (EDS). The results show that the transverse scanning grooving section morphology is V shape, and the longitudinal scanning groove section morphology is W shape. The grooving surface depth and width of transverse scanning are larger and smaller than that of longitudinal scanning when the laser parameters are the same. The depth of the transverse grooving is greater than that of the longitudinal grooving when the laser beam is transverse and longitudinal scanning, the maximum grooving depth is approximately 145.39 μm when the laser energy density is 76.73 J/cm2, and the minimum grooving depth is approximately 83.76 μm when the laser energy density is about 29.59 J/cm2. The thermal conductivity of fiber has a significant effect on the local characteristics of the grooved morphology when using a medium energy density grooving. The obvious recasting layer is produced after the laser is applied to CMC-SiCf/SiC when using a high energy density laser grooving, which directly affects the grooved morphology.

Funder

the “Science and Technology Innovation 2025” Major Project of Ningbo City

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3