Incorporation of Phase Change Materials into the Surface of Aluminum Structures for Thermal Management

Author:

Anderson Christopher,Shaner Forest,Smith Walter,Luhrs ClaudiaORCID

Abstract

This article explores the concept of generating a porous anodic layer on the surface of a metallic component to host a phase change material (PCM) aiming to reduce the peak temperatures that the host structure will experience. The conditions to fabricate a porous anodic layer on top of an aluminum substrate were determined through varying anodization conditions: solution concentration, voltage employed, and anodization times. Pore sizes were characterized using scanning electron microscopy. The alkane n-eicosane was selected as PCM, introduced within the porous anodic annealed layer using vacuum impregnation and the thin film composite structure sealed. Epoxy resin and a metallic paste were tested as sealants. Thermal tests were performed to compare the behavior of aluminum alloy substrates anodized and sealed with and without PCM. The results showed pores with diameters in the 5–85 nm range, with average values that increased as the time of anodization was extended. The aluminum alloy impregnated with n-eicosane presents lowered surface peak temperatures during heating cycles than the samples that were only anodized or than the base alloy, demonstrating the potential of PCM incorporated in the superficial microstructure of anodic structures to manage, to a certain extent, peak transient thermal loads.

Funder

Energy System Technology Evaluation Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3