Preparation and Property Characterization of In2YSbO7/BiSnSbO6 Heterojunction Photocatalyst toward Photocatalytic Degradation of Indigo Carmine within Dye Wastewater under Visible-Light Irradiation

Author:

Luan JingfeiORCID,Niu Bowen,Ma Bingbing,Yang Guangmin,Liu Wenlu

Abstract

In2YSbO7 and In2YSbO7/BiSnSbO6 heterojunction photocatalyst were prepared by a solvothermal method for the first time. The structural characteristics of In2YSbO7 had been represented. The outcomes showed that In2YSbO7 crystallized well and possessed pyrochlore constitution, a stable cubic crystal system and space group Fd3m. The lattice parameter of In2YSbO7 was discovered to be a = 11.102698 Å and the band gap energy of In2YSbO7 was discovered to be 2.68 eV, separately. After visible-light irradiation of 120 minutes (VLGI-120M), the removal rate (ROR) of indigo carmine (IC) reached 99.42% with In2YSbO7/BiSnSbO6 heterojunction (IBH) as a photocatalyst. The ROR of total organic carbon (TOC) reached 93.10% with IBH as a photocatalyst after VLGI-120M. Additionally, the dynamics constant k which was taken from the dynamic curve toward (DCT) IC density and VLGI time with IBH as a catalyst reached 0.02950 min−1. The dynamics constant k which came from the DCT TOC density and VLGI time with IBH as a photocatalyst reached 0.01783 min−1. The photocatalytic degradation of IC in dye wastewater (DW) with IBH as a photocatalyst under VLGI was in accordance with the first-order kinetic curves. IBH was used to degrade IC in DW for three cycles of experiments under VLGI, and the ROR of IC reached 98.74%, 96.89% and 94.88%, respectively, after VLGI-120M, indicating that IBH had high stability. Compared with superoxide anions or holes, hydroxyl radicals possessed the largest oxidative ability for removing IC in DW, as demonstrated by experiments with the addition of trapping agents. Lastly, the probable degradation mechanism and degradation pathway of IC were revealed in detail. The results showed that a visible-light-responsive heterojunction photocatalyst which possessed high catalytic activity and a photocatalytic reaction system which could effectively remove IC in DW were obtained. This work provided a fresh scientific research idea for improving the performance of a single catalyst.

Funder

the Scientific and Technical Innovation Leading Personnel and Team Foundation for Middle-aged and Young Scientist of Science and Technology Bureau of Jilin Province of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3