Closed-Loop Uncertainty: The Evaluation and Calibration of Uncertainty for Human–Machine Teams under Data Drift

Author:

Bishof Zachary1,Scheuerman Jaelle1,Michael Chris J.1

Affiliation:

1. U.S. Naval Research Laboratory, 1005 Balch Boulevard, Stennis Space Center, St. Louis, MS 39529, USA

Abstract

Though an accurate measurement of entropy, or more generally uncertainty, is critical to the success of human–machine teams, the evaluation of the accuracy of such metrics as a probability of machine correctness is often aggregated and not assessed as an iterative control process. The entropy of the decisions made by human–machine teams may not be accurately measured under cold start or at times of data drift unless disagreements between the human and machine are immediately fed back to the classifier iteratively. In this study, we present a stochastic framework by which an uncertainty model may be evaluated iteratively as a probability of machine correctness. We target a novel problem, referred to as the threshold selection problem, which involves a user subjectively selecting the point at which a signal transitions to a low state. This problem is designed to be simple and replicable for human–machine experimentation while exhibiting properties of more complex applications. Finally, we explore the potential of incorporating feedback of machine correctness into a baseline naïve Bayes uncertainty model with a novel reinforcement learning approach. The approach refines a baseline uncertainty model by incorporating machine correctness at every iteration. Experiments are conducted over a large number of realizations to properly evaluate uncertainty at each iteration of the human–machine team. Results show that our novel approach, called closed-loop uncertainty, outperforms the baseline in every case, yielding about 45% improvement on average.

Funder

NRL NISE Program Element Jerome and Isabella Karles Fellowship under Work Unit N20N

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3