A Cooperative Intrusion Detection System for the Internet of Things Using Convolutional Neural Networks and Black Hole Optimization

Author:

Li Peiyu12ORCID,Wang Hui12,Tian Guo1,Fan Zhihui12

Affiliation:

1. Network and Informatization Office, Henan University of Science and Technology, Luoyang 471023, China

2. Henan Engineering Laboratory of Cloud Computing Data Center Network Key Technologies, Luoyang 471023, China

Abstract

Maintaining security in communication networks has long been a major concern. This issue has become increasingly crucial due to the emergence of new communication architectures like the Internet of Things (IoT) and the advancement and complexity of infiltration techniques. For usage in networks based on the Internet of Things, previous intrusion detection systems (IDSs), which often use a centralized design to identify threats, are now ineffective. For the resolution of these issues, this study presents a novel and cooperative approach to IoT intrusion detection that may be useful in resolving certain current security issues. The suggested approach chooses the most important attributes that best describe the communication between objects by using Black Hole Optimization (BHO). Additionally, a novel method for describing the network’s matrix-based communication properties is put forward. The inputs of the suggested intrusion detection model consist of these two feature sets. The suggested technique splits the network into a number of subnets using the software-defined network (SDN). Monitoring of each subnet is done by a controller node, which uses a parallel combination of convolutional neural networks (PCNN) to determine the presence of security threats in the traffic passing through its subnet. The proposed method also uses the majority voting approach for the cooperation of controller nodes in order to more accurately detect attacks. The findings demonstrate that, in comparison to the prior approaches, the suggested cooperative strategy can detect assaults in the NSLKDD and NSW-NB15 datasets with an accuracy of 99.89 and 97.72 percent, respectively. This is a minimum 0.6 percent improvement.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3