Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications

Author:

Szindler Marek,Szindler Magdalena,Drygała AleksandraORCID,Lukaszkowicz KrzysztofORCID,Kaim Paulina,Pietruszka RafałORCID

Abstract

One of the important research directions in the field of photovoltaics is integration with construction. The integration of solar cell systems with a building can reduce installation costs and help optimize the used space. Among the few literature reports on photovoltaic roof tiles, solutions with silicon and thin film solar cells dominate. An interesting solution may be the application of dye-sensitized solar cells. In addition to their interesting properties, they also have aesthetic value. In the classic arrangement, they are constructed using glass with a transparent conductive layer (TCL). This article describes replacing a classic glass counter electrode with an electrode based on a ceramic tile and nickel foil. First, a continuous and homogeneous fluorine-doped tin oxide (FTO) thin film was developed so that the above-mentioned substrate could be applied. The atomization method was used for this purpose. Then, nanocolloidal platinum paste was deposited as a catalytic material using the screen printing method. The electrical parameters of the manufactured DSSCs with and without a counter electrode tile were characterized by measuring their current–voltage characteristics under standard AM 1.5 radiation. A dye-sensitized solar cell integrated with ceramic tiles and nickel foil was produced and displayed an efficiency of over 4%. This solution makes it possible to expand their construction applications. The advantage of this solution is full integration with construction, while simultaneously generating electricity. A dye-sensitized solar cell was built layer-by-layer on a ceramic tile and nickel foil.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3