Effect of Cooling Method on Formability of Laser Cladding IN718 Alloy

Author:

Yang Jianyu,Li XudongORCID,Li Fei,Wang Wenxiao,Li ZhijieORCID,Li Guanchao,Xie Hualong

Abstract

The finite element model (FE) of temperature field of straight thin-walled samples in laser cladding IN718 was established, and the growth of microstructure was simulated by cellular automata (CA) method through macro-micro coupling (CA-FE). The effects of different cooling conditions on microstructure, hardness, and properties of laser-cladding layer were studied by designing cooling device. The results show that the simulation results are in good agreement with the microstructure of the cladding layer observed by the experiment. With the scanning strategy of reducing laser power layer-by-layer, the addition of water cooling device and the processing condition of 0.7 mm Z-axis lift, excellent thin-walled parts can be obtained. With the increase of cladding layers, the pool volume increases, the temperature value increases, the temperature gradient, cooling rate, solidification rate, K value gradually decrease, and eventually tend to be stable, in addition, the hardness shows a fluctuating downward trend. Under the processing conditions of layer-by-layer power reduction and water cooling device, the primary dendrite arm spacing reduced to about 8.3 μm, and the average hardness at the bottom of cladding layer increased from 260 HV to 288 HV. The yield strength and tensile strength of the tensile parts prepared under forced water cooling increased to a certain extent, while the elongation slightly decreased.

Funder

National Natural Science Foundation of China-Liaoning Joint Fund

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3