Abstract
This article deals with the issue of online chatter detection during milling. The aim is to achieve a verification of the reliability and robustness of selected methods for the detection of chatter that can be evaluated on the machine tool in real time by using the accelerometer signal. In the introductory part of the paper, an overview of the current state of the art in the field of chatter detection is summarized. Entropic methods have been selected that evaluate the presence of chatter from the qualitative behavior of the signal rather than from the magnitude of its amplitude, because the latter can be affected by the transmission of vibrations to the accelerometer position. Another criterion for selection was the potential for practical implementation in a real-time evaluation of the accelerometer signal, which is nowadays quite commonly installed on machine tools. The robustness of the methods was tested with respect to tool compliance, which affects both chatter occurrence and vibration transfer to the accelerometer location. Therefore, the study was carried out on a slender milling tool with two different overhangs and on a rigid roughing tool. The reference stability assessment for each measurement was based on samples of the machined surface. The signals obtained from the accelerometer were then post-processed and used to calculate the chatter indicators. In this way, it was possible to compare different methods in terms of their ability to achieve reliable in-process detection of chatter and in terms of the computational complexity of the indicator.
Funder
Ministry of Education Youth and Sports
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献