Hydrophobic Material: Effect of Alkyl Chain Length on the Surface Roughness

Author:

Widati Alfa AkustiaORCID,Fahmi Mochamad ZakkiORCID,Sakti Satya Candra WibawaORCID,Budiastanti Titah Aldila,Purbaningtias Tri EstiORCID

Abstract

The clean technologies of self-cleaning surfaces are expanding rapidly. Highly hydrophobic coatings with strong adhesion, high durability, and dirt-free surfaces have been prepared via sol-gel deposition of SiO2-TiO2-alkylsilane. The influence of the effects of the alkyl chain length of silane on surface roughness was investigated. This deposition involved a one-layer technique to produce the rough surfaces. The bimetal oxide of SiO2-TiO2 created a high level of surface roughness. As a result, the water contact angle of the coatings increased with the increasing alkyl chain length of silane (up to C=8). However, the water contact angle decreased when the C=16 of alkylsilane was applied. It was predicted that the longer alkyl chain would cause the molecules to collapse. The higher hydrophobicity was produced by SiO2-TiO2-OTMS coatings with a water contact angle of about 140.67 ± 1.23°. The effect of the dip-coating technique (one layer and layer-by-layer) on hydrophobicity was also discussed. The results showed that coatings produced by the one-layer technique had a higher contact angle than coatings made by the layer-by-layer technique. The coatings were stable under outdoor exposure and able to hinder dirt attachment to their surfaces.

Funder

Ministry of Research, Technology and Higher Education

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3