Annual Dynamics of Phytoplankton in the Black Sea in Relation to Wind Exposure

Author:

Silkin Vladimir,Mikaelyan Alexander S.,Pautova Larisa,Fedorov Alexey

Abstract

Studies of the annual dynamics of phytoplankton in the NE Black Sea at two stations on the shelf and the continental slope were conducted in 2016, 2017, and 2019. The species composition of phytoplankton has not undergone significant changes compared to previous decades. The coccolithophore Emiliania huxleyi, small flagellates, and diatoms determined the abundance of phytoplankton; and diatoms, coccolithophores, and dinoflagellates determined the total biomass. The annual dynamics of the satellite-derived chlorophyll-a showed peaks in spring and autumn, and sometimes in summer. During the stratified water column period, strong winds in most cases led to a detectible increase in chlorophyll-a. The annual dynamics of phytoplankton followed the pattern: small diatoms (spring) → coccolithophores (late spring, early summer) → large diatoms (summer, autumn). Such a pattern was typical for the previous decades. Coccolithophores dominated in weak SE winds, diatoms in NE winds. The combined effect of sustained offshore wind and strong current can cause diatom blooms during stratified water, even if the wind velocity is moderate.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference93 articles.

1. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes;Volk,1985

2. Ocean Biogeochemical Dynamics;Sarmiento,2006

3. Global Carbon Budget 2018

4. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components

5. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3