A Review of Methods for Ship Detection with Electro-Optical Images in Marine Environments

Author:

Wang Liqian,Fan Shuzhen,Liu YunxiaORCID,Li YongfuORCID,Fei Cheng,Liu Junliang,Liu BohanORCID,Dong Yakui,Liu Zhaojun,Zhao Xian

Abstract

The ocean connects all continents and is an important space for human activities. Ship detection with electro-optical images has shown great potential due to the abundant imaging spectrum and, hence, strongly supports human activities in the ocean. A suitable imaging spectrum can obtain effective images in complex marine environments, which is the premise of ship detection. This paper provides an overview of ship detection methods with electro-optical images in marine environments. Ship detection methods with sea–sky backgrounds include traditional and deep learning methods. Traditional ship detection methods comprise the following steps: preprocessing, sea–sky line (SSL) detection, region of interest (ROI) extraction, and identification. The use of deep learning is promising in ship detection; however, it requires a large amount of labeled data to build a robust model, and its targeted optimization for ship detection in marine environments is not sufficient.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerial visual data-driven approach for berthing capacity estimation in restricted waters;Ocean & Coastal Management;2024-02

2. A sea-sky-line detection method for long wave infrared image based on improved Swin Transformer;Infrared Physics & Technology;2024-01

3. Vessel Collision Warning Method using Deep Learning-based Vessel Detection and AIS;The Journal of Korean Institute of Information Technology;2023-11-30

4. Short range K-band radar for maritime security;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

5. The Big Picture: An Improved Method for Mapping Shipping Activities;Remote Sensing;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3