Role of Storm Erosion Potential and Beach Morphology in Controlling Dune Erosion

Author:

Lemke LauraORCID,Miller Jon K.ORCID

Abstract

Coastal erosion is controlled by two sets of factors, one related to storm intensity and the other related to a location’s vulnerability. This study investigated the role of each set in controlling dune erosion based on data compiled for eighteen historical events in New Jersey. Here, storm intensity was characterized by the Storm Erosion Index (SEI) and Peak Erosion Intensity (PEI), factors used to describe a storm’s cumulative erosion potential and maximum erosive power, respectively. In this study, a direct relationship between these parameters, beach morphology characteristics, and expected dune response was established through a classification tree ensemble. Of the seven input parameters, PEI was the most important, indicating that peak storm conditions with time scales on the order of hours were the most critical in predicting dune impacts. Results suggested that PEI, alone, was successful in distinguishing between storms most likely to result in no impacts (PEI < 69) and those likely to result in some (PEI > 102), regardless of beach condition. For intensities in between, where no consistent behavior was observed, beach conditions must be considered. Because of the propensity for beach conditions to change over short spatial scales, it is important to predict impacts on a local scale. This study established a model with the computational effectiveness to provide such predictions.

Funder

New Jersey Department of Environmental Protection

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference53 articles.

1. Hurricane Sandy: Beach-dune performance at New Jersey Beach Profile Network sites;Barone;Shore Beach,2014

2. Hurricane Damage Classification Methodology and Fragility Functions Derived from Hurricane Sandy’s Effects in Coastal New Jersey

3. Post-storm beach and dune recovery: Implications for barrier island resilience

4. Stages and Durations of Post-Storm Beach Recovery, Southeastern Texas Coast, U.S.A;Morton;J. Coast. Res.,1994

5. Evolution of a beach–dune system following a catastrophic storm overwash event: Greenwich Dunes, Prince Edward Island, 1936–2005

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3