Development of a Datalogger for Submarine Glider: Integration of Fault-Tolerant Software Layers

Author:

De León-Gordillo DagobertoORCID,Rodríguez-Olivares Noé AmirORCID,Barriga-Rodríguez LeonardoORCID,Sánchez-Gaytán José Luis,Soto-Cajiga Jorge AlbertoORCID,Ronquillo-Lomelí GuillermoORCID,Salgado-Jiménez TomásORCID

Abstract

Submarine gliders are specialized systems used in applications such as environmental monitoring of marine fauna, in the oil industry, among others. The glider launch and capture is a costly process that requires substantial technological and human resources, so the orderly and error-free storage of data is of fundamental importance due to the subsequent analysis. The amount of information being obtained from the seabed is increasing, this leads to the need to develop robust and low-cost ad-hocsystems for this type of application. The challenge is the integration of the different software layers in the storage system because the monitored variables must be ordered according to different glider operations such as calibration data update and navigation. Additionally, to avoid data corruption in the memory chip, error control coding must be used. The goal of this paper is to present a novel design of different layers of software integrated into a datalogger: reception, error control, and storage logic for the different glider operations. The design of the datalogger is based on a NAND flash memory chip and an MSP430 microcontroller. To correct bit-flipping errors, a BCH code that corrects 4 errors for every 255 bits is implemented into the microcontroller. The design and evaluation are performed for different glider operations, and for different lengths and correction capabilities of the BCH module. A test to calculate the storage time has been carried out. This test shows that in the case of 256 bytes per sample, at 30 samples per minute, and 1 GB of storage capacity, it is possible to collect data from the glider sensors for 84 days. The results obtained show that our device is a useful option for storing underwater sensor data due to its real-time storage, power consumption, small size, easy integration, and its reliability, where the bit error rate BER is of 2.4 ×10−11.

Funder

Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Slow-Varying Measurement Outlier Mitigation Method for HVC-Assisted SINS/DVL Navigation Applications;2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT);2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3