Conformal Mapping-Based Discrete Vortex Method for Simulating 2-D Flows around Arbitrary Cylinders

Author:

Jin GuoqingORCID,Sun Zhe,Zong Zhi,Zou Li,Hu Yingjie

Abstract

A novel technique based on conformal mapping and the circle theorem has been developed to tackle the boundary penetration issue, in which vortex blobs leak into structures in two-dimensional discrete vortex simulations, as an alternative to the traditional method in which the blobs crossing the boundary are simply removed from the fluid field or reflected back to their mirror-image positions outside the structure. The present algorithm introduces an identical vortex blob outside the body using the mapping method to avoid circulation loss caused by the vortex blob penetrating the body. This can keep the body surface streamlined and guarantees that the total circulation will be constant at any time step. The model was validated using cases of viscous incompressible flow passing elliptic cylinders with various thickness-to-chord ratios at Reynolds numbers greater than Re = 1 × 105. The force and velocity fields revealed that this boundary scheme converged, and the resultant time-averaged surface pressure distributions were all in excellent agreement with wind tunnel tests. Furthermore, a flow around a symmetrical Joukowski foil at Reynolds number Re = 4.62 × 104, without considering the trailing cusp, was investigated, and a close agreement with the experimental data was obtained.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3