Energy Characteristics of Acoustic Emission at the Volume-Expansion Point of a Rock Bridge: A New Insight into the Evolutionary Mechanism of Coastal Cliff Collapse

Author:

Chen Hongran,Zhai Mengyang,Xue LeiORCID

Abstract

The recession of a coast can destabilize coastal cliffs. The stability of a cliff is controlled by a rock bridge. Identifying the volume-expansion point of rock bridges is crucial to assess cliff stability, but currently there are few identifying methods. Using a numerical analytical tool, we investigate the acoustic emission characteristics during shear tests on rock bridges. Acoustic emission events with a high energy level, i.e., characteristic events which occur at the volume-expansion point of rock bridges, can indicate this point. The characteristic events, the mainshock (the maximum event corresponding to rock-bridge rupture), and the smaller events between them constitute a special activity pattern, as the micro-seismicity during the evolutionary process of a coastal cliff collapse in Mesnil-Val, NW France showed. This pattern arises in rock bridges with different mechanical properties and geometry, or under different loading conditions. Although the energy level of characteristic events and mainshocks changes with the variation of the conditions, the difference of their energy level is approximately constant. The spatial distribution of characteristic events and mainshocks can indicate the location of rock bridges. These findings help to better understand the evolutionary mechanism of collapses and provide guidelines for monitoring the stability of coastal cliffs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3