Abstract
The recession of a coast can destabilize coastal cliffs. The stability of a cliff is controlled by a rock bridge. Identifying the volume-expansion point of rock bridges is crucial to assess cliff stability, but currently there are few identifying methods. Using a numerical analytical tool, we investigate the acoustic emission characteristics during shear tests on rock bridges. Acoustic emission events with a high energy level, i.e., characteristic events which occur at the volume-expansion point of rock bridges, can indicate this point. The characteristic events, the mainshock (the maximum event corresponding to rock-bridge rupture), and the smaller events between them constitute a special activity pattern, as the micro-seismicity during the evolutionary process of a coastal cliff collapse in Mesnil-Val, NW France showed. This pattern arises in rock bridges with different mechanical properties and geometry, or under different loading conditions. Although the energy level of characteristic events and mainshocks changes with the variation of the conditions, the difference of their energy level is approximately constant. The spatial distribution of characteristic events and mainshocks can indicate the location of rock bridges. These findings help to better understand the evolutionary mechanism of collapses and provide guidelines for monitoring the stability of coastal cliffs.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献