Abstract
Powder mixed electrical discharge machining (PM-EDM) is a technological advancement in electrical discharge machining (EDM) processes where fine powder is added to dielectric to improve the machining rate and surface quality. In this paper, machining of Nimonic-90 was carried out using fabricated PM-EDM, setup by adding silicon powder to kerosene oil. The influence of four input process parameters viz. powder concentration (PC), discharge current (IP), spark on duration (SON), and spark off duration (SOFF) has been investigated on surface roughness and recast layer thickness. L9 Taguchi orthogonal and grey relational analysis have been employed for experimental design and multi-response optimization, respectively. With the addition of silicon powder to kerosene oil, a significant decrease in surface roughness and recast layer thickness was noticed, as compared to pure kerosene. Spark on duration was the most significant parameter for both surface roughness and the recast layer thickness. The minimum surface roughness (3.107 µm) and the thinnest recast layer (14.926 μm) were obtained at optimum process parameters i.e., PC = 12 g/L, IP = 3 A, SON = 35 μs, and SOFF = 49 μs using grey relational analysis.
Funder
Deanship of Scientific Research, Qassim University
Subject
General Materials Science,Metals and Alloys
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献