Abstract
A changing climate and global warming have adversely affected Pakistan’s moist and dry temperate vegetation. Abies pindrow (fir) (Royle ex D.Don) Royle and Picea smithiana (spruce) Wall.) Boiss are the two major representative species of the moist and dry temperate forests in Northern Pakistan. The dendroclimatic study of both species is crucial for the assessment of climate variability at various spatial and temporal scales. This study examined the dendroclimatology of fir and spruce, and analyzed the growth–climate relationship along the latitudinal gradient. Two hundred and nineteen samples (ring cores) of the two species were collected from five different sites (Shogran (SHG), Upper Dir (UDS), Bahrain Swat (BSG), Astore Gilgit (NPKA), and Sharan Kaghan (SHA)) in Northern Pakistan. The cores were cross-dated, and chronologies were generated for the species and climatic data (precipitation, temperature, and Palmer Drought Severity Index (PDSI)) correlated with radial growth. The interspecies correlations for fir were calculated as 0.54, 0.49, 0.52, 0.60, and 0.48 for SHG, UDS, BSG, NPKA, and SHA, respectively, whereas in the case of spruce, the interspecies correlations were 0.44 for SHG, 0.55 for UDS, and 0.49 for BSG. Climate variability was observed in the samples of both species, which showed significant drought and humid years at specific intervals. With respect to the correlation between tree-ring width and climatic factors, a positive correlation was observed between fir growth and summer season precipitation, mean temperature, and PDSI in the spring, summer, and autumn seasons. Similarly, the growth of spruce was positively correlated with precipitation (in February, September, and May) and PDSI (in the summer and autumn seasons); however, no correlation was observed between monthly temperature and spruce growth. The relationship of fir and spruce growth with seasonal precipitation and PDSI showed a change from a negative to a positive correlation after 1980, following rapid warming. During the winter and spring, the correlation coefficient between fir radial growth and seasonal temperature showed an initial upward trend followed by a progressive decrease along with increasing latitude. Seasonal variations were observed regarding the correlation coefficient between spruce radial growth and increasing latitude (increasing in winter; a decreasing trend in spring and summer; an initial increase and then a decrease in autumn). In the same way, the correlation of seasonal temperature and PDSI with the radial growth of both species showed increasing trends with increasing latitude, except in the autumn season.
Funder
Eco-Meteorological Innovation Open Laboratory in Northeast China, China meteorological Bureau