Geochemical Evidence Constraining Genesis and Mineral Scaling of the Yangbajing Geothermal Field, Southwestern China

Author:

Yang Hu1,Yuan Xingcheng2,Chen Yongling1,Liu Jiawei2ORCID,Zhan Chun1,Lv Guosen2,Hu Junfeng1,Sun Minglu3,Zhang Yunhui2ORCID

Affiliation:

1. Research Center of Applied Geology, China Geological Survey, Chengdu 610036, China

2. Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China

3. College of Engineering, Tibet University, Lasa 850000, China

Abstract

The Yangbajing geothermal field, a renowned high-temperature geothermal resource in Tibet of southwestern China, has been utilized for power generation for several decades. To improve geothermal exploitation in the Yangbajing, genesis and mineral scaling have yet to be further revealed. In this study, hydrochemistry and D-O-Sr isotopy were employed for analyzing genesis and mineral scaling in the Yangbajing geothermal field. The geothermal waters were weakly alkaline and had a high TDS content (1400–2900 mg/L) with the Cl-Na, Cl·HCO3-Na, and HCO3·Cl-Na types. The dissolution of silicate minerals (sodium and potassium feldspars) and positive cation exchange controlled the hydrogeochemical process. The geothermal water was recharged from snow-melted water and meteoric water originating from the Nyainqentanglh Mountains and Tangshan Mountains. The geothermal waters possessed the highest reservoir temperature of 299 °C and the largest circulation depth of 2010 m according to various geothermometers. The geothermal waters can produce CaCO3 and SiO2 scaling during vertical and horizontal transport. These achievements can provide a scientific basis for the sustainable development and conservation of the high-temperature geothermal resources in Yangbajing and elsewhere.

Funder

The Scientific Key R&D project of the Tibet Autonomous Region

National Natural Science Foundation of China

Sichuan Provincial Department of Science and Technology Projects

Yibin Government Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3