Simulation and Reconstruction of Runoff in the High-Cold Mountains Area Based on Multiple Machine Learning Models

Author:

Wang Shuyang1,Sun Meiping12,Wang Guoyu1,Yao Xiaojun12ORCID,Wang Meng3ORCID,Li Jiawei1,Duan Hongyu1ORCID,Xie Zhenyu1,Fan Ruiyi1,Yang Yang1

Affiliation:

1. Department of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China

2. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China

3. Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

Runoff from the high-cold mountains area (HCMA) is the most important water resource in the arid zone, and its accurate forecasting is key to the scientific management of water resources downstream of the basin. Constrained by the scarcity of meteorological and hydrological stations in the HCMA and the inconsistency of the observed time series, the simulation and reconstruction of mountain runoff have always been a focus of cold region hydrological research. Based on the runoff observations of the Yurungkash and Kalakash Rivers, the upstream tributaries of the Hotan River on the northern slope of the Kunlun Mountains at different time periods, and the meteorological and atmospheric circulation indices, we used feature analysis and machine learning methods to select the input elements, train, simulate, and select the preferences of the machine learning models of the runoffs of the two watersheds, and reconstruct the missing time series runoff of the Kalakash River. The results show the following. (1) Air temperature is the most important driver of runoff variability in mountainous areas upstream of the Hotan River, and had the strongest performance in terms of the Pearson correlation coefficient (ρXY) and random forest feature importance (FI) (ρXY = 0.63, FI = 0.723), followed by soil temperature (ρXY = 0.63, FI = 0.043), precipitation, hours of sunshine, wind speed, relative humidity, and atmospheric circulation were weakly correlated. A total of 12 elements were selected as the machine learning input data. (2) Comparing the results of the Yurungkash River runoff simulated by eight machine learning methods, we found that the gradient boosting and random forest methods performed best, followed by the AdaBoost and Bagging methods, with Nash–Sutcliffe efficiency coefficients (NSE) of 0.84, 0.82, 0.78, and 0.78, while the support vector regression (NSE = 0.68), ridge (NSE = 0.53), K-nearest neighbor (NSE = 0.56), and linear regression (NSE = 0.51) were simulated poorly. (3) The application of four machine learning methods, gradient boosting, random forest, AdaBoost, and bagging, to simulate the runoff of the Kalakash River for 1978–1998 was generally outstanding, with the NSE exceeding 0.75, and the results of reconstructing the runoff data for the missing period (1999–2019) could well reflect the characteristics of the intra-annual and inter-annual changes in runoff.

Funder

National Natural Science Foundation of China

Third Xinjiang Scientific Expedition Program

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3