Processing of the Ti25Ta25Nb3Sn Experimental Alloy Using ECAP Process for Biomedical Applications

Author:

Bortolini Celso1ORCID,Carobolante João Pedro Aquiles1,Timokhina Ilana2,Caporalli Filho Angelo1,Rosifini Alves Ana Paula1

Affiliation:

1. Department of Materials and Technology, School of Engineering and Sciences, São Paulo State University (Unesp), Guaratinguetá Campus, Guaratinguetá, São Paulo 12516-410, Brazil

2. Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3217, Australia

Abstract

The development of titanium-β alloys for biomedical applications is associated with the addition of alloying elements or the use of processing techniques to obtain suitable bulk properties. The Ti25Ta25Nb3Sn alloy has been highlighted for its mechanical properties and biocompatibility. To further enhance the properties of titanium alloys for biomedical applications, equal channel angular pressing (ECAP) was used due to its capability of refining the microstructure of the alloy, leading to improved mechanical properties without significant changes in Young’s modulus. This study aims to evaluate the impact of ECAP on the microstructure of the Ti-25Sn-25Nb-3Nb alloy and investigate the correlation between the microstructure, mechanical properties, and corrosive behavior. Grain refinement was achieved after four ECAP passes, with an average grain diameter of 395 nm and a non-homogeneous structure, and microhardness was slightly increased from 193 to 212 HV after four ECAP passes. The thermomechanical aspects of the ECAP processing have led to the formation of a metastable α″ phase during the first two passes, while after four passes, the structure was composed only of the β phase. The corrosion resistance of the alloy was increased after four passes, presenting the best results in terms of the improvement of passivation corrosion density.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil

National Council for Scientific and Technological Development

Unesp–São Paulo State University-Scholarship

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3