Towards a Simulation-Assisted Prediction of Residual Stress-Induced Failure during Powder Bed Fusion of Metals Using a Laser Beam: Suitable Fracture Mechanics Models and Calibration Methods

Author:

Panzer Hannes1ORCID,Wolf Daniel1ORCID,Bachmann Andreas1ORCID,Zaeh Michael Friedrich1

Affiliation:

1. Institute for Machine Tools and Industrial Management (iwb), TUM School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany

Abstract

In recent years, Additive Manufacturing (AM) has emerged as a transformative technology, with the process of Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M) gaining substantial attention for its precision and versatility in fabricating metal components. A major challenge in PBF-LB/M is the failure of the component or the support structure during the production process. In order to locate a possible residual stress-induced failure prior to the fabrication of the component, a suitable failure criterion has to be identified and implemented in process simulation software. In the work leading to this paper, failure criteria based on the Rice-Tracey (RT) and Johnson-Cook (JC) fracture models were identified as potential models to reach this goal. The models were calibrated for the nickel-based superalloy Inconel 718. For the calibration process, a conventional experimental, a combined experimental and simulative, and an AM-adapted approach were applied and compared. The latter was devised to account for the particular phenomena that occur during PBF-LB/M. It was found that the JC model was able to capture the calibration data points more precisely than the RT model due to its higher number of calibration parameters. Only the JC model calibrated by the experimental and AM-adapted approach showed an increased equivalent plastic failure strain at high triaxialities, predicting a higher cracking resistance. The presented results can be integrated into a simulation tool with which the potential fracture location as well as the cracking susceptibility during the manufacturing process of PBF-LB/M parts can be predicted.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3