Identification of the Optimal Blank Holder Force through In-Line Measurement of Blank Draw-In in a Deep Drawing Process

Author:

Palmieri Maria Emanuela1,Nono Dachille Andrea1,Tricarico Luigi1

Affiliation:

1. Department of Mechanical, Mathematic and Management Engineering, Politecnico di Bari, 70125 Bari, Italy

Abstract

During the forming process, variations in noise parameters can negatively impact product quality. To prevent waste from these fluctuations, this study suggests a method for the in-line optimisation of the deep drawing process. The noise parameter considered is the friction coefficient, assuming the variability in lubrication conditions at the blank–tool interface. The proposed approach estimates the noise factor variability during the process by tracking the draw-in of the blank at critical points. Using this estimation, the optimal blank holder force (BHF) is calculated and then adjusted in-line to modify blank sliding and prevent critical issues on the component. For this purpose, a Finite Element (FE) model of a deep drawing case study was developed, and numerical simulation results were used to construct surrogate models while estimating both the friction coefficient and optimal BHF. The FE model’s predictive capability was verified through preliminary experimental tests, and the control logic was numerically validated. Results show the effectiveness of this control type. By adjusting the BHF just once, a defect-free component is achieved. This method overcomes the limitations of feedback controls, which often need multiple adjustment steps. The time required to estimate the friction coefficient and the maximum time available for adjusting the BHF without causing defects was identified.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3