Mechanical Investigation of Recyclability for Sustainable Use of Laser-Based Metal–Polymer Joints

Author:

Wortmann Christoph1,Brosda Maximilian1,Häfner Constantin1

Affiliation:

1. Fraunhofer Institute for Laser Technology ILT, Steinbachstr. 15, 52074 Aachen, Germany

Abstract

Metal–plastic hybrid components combine the strength of metal with the low density of plastic. Due to weight reduction, these components are becoming increasingly important. To reduce the need for raw materials, processes for the recyclability of hybrid compounds are being investigated to reuse the metal part. The aim of this research is to characterize the mechanical bond strength after laser-based cleaning and reuse of the metal component. For this purpose, laser radiation is used to introduce microstructures into the metal surface. Afterwards, the polymer is joined to the metal component with laser radiation. As a reference of the initial mechanical bond strength, the joined samples are examined in a tensile testing machine. The polymer residues remaining in the structured metal surface are removed with different laser-based cleaning strategies. The metal is used again to generate another hybrid joined sample with a new polymer component. The results of the subsequent tests in the tensile testing machine are used for a detailed analysis of the reusability. As a result of this investigation, the laser-cleaned specimens showed significant improvements in bond strength compared to the uncleaned specimens. The process of laser-based cleaning for the reuse of the metallic part of hybrid joined components provides a fundamental procedure for improving the circular economy. In the future, this study should be validated in subsequent investigations on realistic components with complex geometries.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3